Orion, stars, space, sky

Orion Constellation

Orion is a prominent constellation located on the celestial equator and visible throughout the world. It is one of the most conspicuous and recognizable constellations in the night sky. It is named after Orion, a hunter in Greek mythology. Its brightest stars are blue-white Rigel (Beta Orionis) and red Betelgeuse (Alpha Orionis).

Characteristics

The constellation of Orion, as it can be seen by the naked eye. Lines have been drawn.

Orion is bordered by Taurus to the northwest, Eridanus to the southwest, Lepus to the south, Monoceros to the east, and Gemini to the northeast. Covering 594 square degrees, Orion ranks twenty-sixth of the 88 constellations in size. The constellation boundaries, as set by Eugène Delporte in 1930, are defined by a polygon of 26 sides. In the equatorial coordinate system, the right ascension coordinates of these borders lie between  04 h 43.3 m and  06 h 25.5 m. The constellation’s three-letter abbreviation, as adopted by the International Astronomical Union in 1922, is “Ori”.

Orion is most visible in the evening sky from January to March, winter in the Northern Hemisphere, and summer in the Southern Hemisphere. In the tropics, the constellation transits at the zenith.

In the period May–July (summer in the Northern Hemisphere, winter in the Southern Hemisphere), Orion is in the daytime sky and thus not visible at most latitudes. However, for much of Antarctica in the Southern Hemisphere’s winter months, the Sun is below the horizon even at midday. Stars (and thus Orion) are then visible at twilight for a few hours around local noon, low in the North. At the same time of day at the South Pole itself (Amundsen–Scott South Pole Station), In the Southern Hemisphere’s summer months, when Orion is normally visible in the night sky, the constellation is actually not visible in Antarctica because the sun does not set at that time of year south of the Antarctic Circle.

In countries close to the equator (e.g. Kenya, Indonesia, Colombia, Ecuador), Orion appears overhead in December around midnight and in the February evening sky.

Navigational aid

Orion is very useful as an aid to locating other stars. By extending the line of the Belt southeastward, Sirius (α CMa) can be found; northwestward, Aldebaran (α Tau). A line eastward across the two shoulders indicates the direction of Procyon (α CMi). A line from Rigel through Betelgeuse points to Castor and Pollux. Additionally, Rigel is part of the Winter Circle asterism. Sirius and Procyon, which may be located from Orion by following imaginary lines (see map), also are points in both the Winter Triangle and the Circle.

Features

Orion’s seven brightest stars form a distinctive hourglass-shaped asterism, or pattern, in the night sky. Four stars—Rigel, Betelgeuse, Bellatrix and Saiph—form a large roughly rectangular shape, in the centre of which lie the three stars of Orion’s Belt—Alnitak, Alnilam and Mintaka. Descending from the ‘belt’ is a smaller line of three stars, Orion’s Sword (the middle of which is in fact not a star but the Orion Nebula), also known as the hunter’s sword.

Many of the stars are luminous hot blue supergiants, with the stars of the belt and sword forming the Orion OB1 Association. Standing out by its red hue, Betelgeuse may nevertheless be a runaway member of the same group.

Bright stars

  • Betelgeuse, also designated Alpha Orionis, is a massive M-type red supergiant star nearing the end of its life. It is the second brightest star in Orion, and is a semiregular variable star. It serves as the “right shoulder” of the hunter it represents (assuming that he is facing the observer). It is generally the eleventh brightest star in the night sky, but this has varied between being the tenth brightest to the 23rd brightest by the end of 2019. The end of its life is expected to result in a supernova explosion that will be highly visible from Earth, possibly outshining the Earth’s moon and being visible during the day. This is most likely to occur within the next 100,000 years.
  • Rigel, also known as Beta Orionis, is a B-type blue supergiant that is the sixth brightest star in the night sky. Similar to Betelgeuse, Rigel is fusing heavy elements in its core and will pass its supergiant stage soon (on an astronomical timescale), either collapsing in the case of a supernova or shedding its outer layers and turning into a white dwarf. It serves as the left foot of Orion, the hunter.
  • Bellatrix is designated Gamma Orionis by Johann Bayer. It is the twenty-seventh brightest star in the night sky. Bellatrix is considered a B-type blue giant, though it is too small to explode in a supernova. Bellatrix’s luminosity is derived from its high temperature rather than a large radius. Bellatrix marks Orion’s left shoulder and it means the “female warrior”, and is sometimes known colloquially as the “Amazon Star”. It is the closest major star in Orion at only 244.6 light years.
  • Mintaka is designated Delta Orionis, despite being the faintest of the three stars in Orion’s Belt. Its name means “the belt”. It is a multiple star system, composed of a large B-type blue giant and a more massive O-type main-sequence star. The Mintaka system constitutes an eclipsing binary variable star, where the eclipse of one star over the other creates a dip in brightness. Mintaka is the westernmost of the three stars of Orion’s Belt, as well as the northernmost.
  • Alnilam is designated Epsilon Orionis and is named for the Arabic phrase meaning “string of pearls”. It is the middle and brightest of the three stars of Orion’s Belt. Alnilam is a B-type blue supergiant; despite being nearly twice as far from the Sun as the other two belt stars, its luminosity makes it nearly equal in magnitude. Alnilam is losing mass quickly, a consequence of its size. It is the farthest major star in Orion at only 1,344 light years.
  • Alnitak, meaning “the girdle”, is designated Zeta Orionis, and is the easternmost star in Orion’s Belt. It is a triple star system, with the primary star being a hot blue supergiant and the brightest class O star in the night sky.
  • Saiph is designated Kappa Orionis by Bayer, and serves as Orion’s right foot. It is of a similar distance and size to Rigel, but appears much fainter. It means the “sword of the giant”
  • Meissa is designated Lambda Orionis, forms Orion’s head, and is a multiple star with a combined apparent magnitude of 3.33. Its name means the “shining one”.
Bright stars of Orion
Proper
name
Light years Apparent magnitude
Betelgeuse 624 0.42
Rigel 772 0.18
Bellatrix 245 1.64
Mintaka 916 2.20
Alnilam 1,342 1.69
Alnitak 800 1.88
Saiph 650 2.07
Meissa 1,042 3.47

Belt

Orion’s Belt or The Belt of Orion is an asterism within the constellation. It consists of the three bright stars Zeta (Alnitak), Epsilon (Alnilam), and Delta (Mintaka). Alnitak is around 800 light years away from earth and is 100,000 times more luminous than the Sun; much of its radiation is in the ultraviolet range, which the human eye cannot see. Alnilam is approximately 1340 light years away from Earth, shines with magnitude 1.70, and with ultraviolet light is 375,000 times more luminous than the Sun. Mintaka is 915 light years away and shines with magnitude 2.21. It is 90,000 times more luminous than the Sun and is a double star: the two orbit each other every 5.73 days. In the Northern Hemisphere, Orion’s Belt is best visible in the night sky during the month of January around 9:00 pm, when it is approximately around the local meridian.

Just southwest of Alnitak lies Sigma Orionis, a multiple star system composed of five stars that have a combined apparent magnitude of 3.7 and lying 1150 light years distant. Southwest of Mintaka lies the quadruple star Eta Orionis.

Sword

Orion’s Sword contains the Orion Nebula, the Messier 43 nebula, the Running Man Nebula, and the stars Theta Orionis, Iota Orionis, and 42 Orionis.

Head

Three stars comprise a small triangle that marks the head. The apex is marked by Meissa (Lambda Orionis), a hot blue giant of spectral type O8 III and apparent magnitude 3.54, which lies some 1100 light years distant. Phi-1 and Phi-2 Orionis make up the base. Also nearby is the very young star FU Orionis.

Club

Stretching north from Betelgeuse are the stars that make up Orion’s club. Mu Orionis marks the elbow, Nu and Xi mark the handle of the club, and Chi 1 and Chi 2  mark the end of the club. Just east of Chi1 is the Mira-type variable red giant U Orionis.

Shield

West from Bellatrix lie six stars all designated Pi Orionis which make up Orion’s shield.

Future

Animation showing Orion’s proper motion from 50000 BC to 50000 AD. As you can see, Pi3 Orionis moves the most rapidly.

Orion is located on the celestial equator, but it will not always be so located due to the effects of precession of the Earth’s axis. Orion lies well south of the ecliptic, and it only happens to lie on the celestial equator because the point on the ecliptic that corresponds to the June solstice is close to the border of Gemini and Taurus, to the north of Orion. Precession will eventually carry Orion further south, and by AD 14000 Orion will be far enough south that it will become invisible from the latitude of Great Britain.

Further in the future, Orion’s stars will gradually move away from the constellation due to proper motion. However, Orion’s brightest stars all lie at a large distance from the Earth on an astronomical scale—much farther away than Sirius, for example. Orion will still be recognizable long after most of the other constellations—composed of relatively nearby stars—have distorted into new configurations, with the exception of a few of its stars eventually exploding as supernovae, for example Betelgeuse, which is predicted to explode sometime in the next million years.

Leave a Comment